منابع مشابه
Semilinear Poisson problems in Sobolev-Besov spaces on Lipschitz domains
Extending recent work for the linear Poisson problem for the Laplacian in the framework of Sobolev-Besov spaces on Lipschitz domains by Jerison and Kenig [16], Fabes, Mendez and Mitrea [9], and Mitrea and Taylor [30], here we take up the task of developing a similar sharp theory for semilinear problems of the type ∆u − N(x, u) = F (x), equipped with Dirichlet and Neumann boundary conditions.
متن کاملTrace Theorems for Sobolev Spaces on Lipschitz Domains. Necessary Conditions
A famous theorem of E. Gagliardo gives the characterization of traces for Sobolev spaces W 1, p (Ω) for 1 ≤ p < ∞ when Ω ⊂ R is a Lipschitz domain. The extension of this result to W m, p (Ω) for m ≥ 2 and 1 < p < ∞ is now well-known when Ω is a smooth domain. The situation is more complicated for polygonal and polyhedral domains since the characterization is given only in terms of local compati...
متن کاملHolomorphic Mean Lipschitz Spaces and Hardy Sobolev Spaces on the Unit Ball
For points z = (z1, · · · , zn) and w = (w1, · · · , wn) in C we write 〈z, w〉 = z1w1 + · · ·+ znwn, |z| = √ |z1| + · · ·+ |zn|. Let B = {z ∈ C : |z| < 1} denote the open unit ball and let S = {ζ ∈ C : |ζ| = 1} denote the unit sphere in C. The normalized Lebesgue measures on B and S will be denoted by dv and dσ, respectively. Let H(B) denote the space of all holomorphic functions in B. Given 0 <...
متن کاملOn approximation numbers of Sobolev embeddings of weighted function spaces
We investigate asymptotic behaviour of approximation numbers of Sobolev embeddings between weighted function spaces of Sobolev–Hardy–Besov type with polynomials weights. The exact estimates are proved in almost all cases. © 2005 Elsevier Inc. All rights reserved.
متن کاملLogarithmic Sobolev Spaces on R N ; Entropy Numbers, and Some Application 4 Applications 37 Logarithmic Sobolev Spaces on R N ; Entropy Numbers, and Some Application
In 14] and 11] we have studied compact embeddings of weighted function spaces on R n , p 2 (R n), s1 > s2, 1 < p1 p2 < 1, s1 ? n=p1 > s2 ? n=p2, and w(x) of the type w(x) = (1 + jxj) (log(2 + jxj)) , 0, 2 R. We have determined the asymptotic behaviour of the corresponding entropy numbers e k (idH). Now we are interested in the limiting case s1 ?n=p1 = s2 ?n=p2. of the so modiied embedding idH;a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Michigan Mathematical Journal
سال: 2007
ISSN: 0026-2285
DOI: 10.1307/mmj/1197056457